
com.saba.doe
Class AccessibilityPicker
java.lang.Object
 |
 +--com.saba.denver.SabaObject
 |
 +--com.saba.doe.AccessibilityPicker

public class AccessibilityPicker
extends SabaObject

AccessibilityPicker is a custom class that will manage the data for the DOE/SFA/Accenture
Accessibility needes. This class is designed to work in compliance with the SFA University
Modernization LMS Project - Phase II, LMS Accessibility Issues Design, 17 December, 2001

The accessibility will be stored in several relational tables in the Saba database. All IDs generated per
the Accessibility requirements in any table will be incrementally numbered, have appropriate prefixes
(see FGT_DD_CLASS for list) for data dictionary compliance and be numbered from 98 * 10^13 and
higher.

The list of the tables are:

FGT_GEN - a generic entity relationship (ER) table that relates one saba object to another. Each ID
attribute will hereby be prefixed by the 5 character `acces' string. For relating accessibility needs to the
order, the ID1 attribute will contain an order ID from TPT_OE_ORDER, while the ID2 attribute will
contain a list of values ID to FGT_LIST_OF_VAL. For storing comments per each of the
forementioned accessibility needs, the ID1 attribute will contain the list of values ID and the STR1
attribute will contain the descriptive free-form field possibly filled in by the user. Please note STR can
and may be NULL; the ID2 attribute will contain (for consistency's and redundancy's sake) the order id.

FGT_LOV - location to hold list-of-values (LOVs). Each row in this table represents one abstracted
list of values by name. Each item in FGT_LOV is stored in:

FGT_LIST_OF_VAL - holds each item of the named list of values from the FGT_LOV table. The
LIST_ID contains a reference to the FGT_LOV.ID attribute earlier described.

TPT_OE_ORDER - is the order table in which all order information is stored. The CUSTOM0
attribute in this table golds the general comment possibly entered by the learner when registering for any
given order.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Page 1 of 4: Class AccessibilityPicker

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

AccessibilityPicker

public AccessibilityPicker(java.lang.String siteName,
 java.lang.String orderId)
 throws com.saba.exception.SabaException

Instantiate a new AccessibilityPicker.
Parameters:

siteName - is a valid name of a SabaSite. This is by default `SabaWeb' but can be of any
name depending on what is named in SabaAdmin. This parameter can be obtained from the
getSiteName() method in a SabaPage.
orderId - is the order id attribute for which we will be attaching data.

Constructor Summary
AccessibilityPicker(java.lang.String siteName, java.lang.String orderId)
 Instantiate a new AccessibilityPicker.

Method Summary
 java.lang.Object

[] getAccessibilityIds()
 Obtain a set of Saba database IDs representing a list of values for accessibility
needs.

 java.lang.String getAccessibilityName(java.lang.String id)
 Per each obtainable accessibility IDs, obtain the user interface name for the id.

 void insert(java.lang.Object[] accessibilityIds)
 Update the order with the given set (array) of accessibilityIds.

static void main(java.lang.String[] argv)
 Unit test method.

 void setAccessibilityComment(java.lang.String accessibilityId,
java.lang.String comment)
 Set the comment in the FGT_GEN.STR1 attribute per the given accessibilityId.

 void setComment(java.lang.String comment)
 setComment() will set (update) the comment and the
TPT_OE_ORDER.CUSTOM0 attribute per the named order.

Methods inherited from class com.saba.denver.SabaObject
close, finalize, getConnection, log

Methods inherited from class java.lang.Object
clone, equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

Page 2 of 4: Class AccessibilityPicker

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

setComment

public void setComment(java.lang.String comment)
 throws com.saba.exception.SabaException,
 java.sql.SQLException

setComment() will set (update) the comment and the TPT_OE_ORDER.CUSTOM0 attribute per
the named order.
Parameters:

comment - is the comment string that will be placed in this field.

setAccessibilityComment

public void setAccessibilityComment(java.lang.String accessibilityId,
 java.lang.String comment)
 throws com.saba.exception.SabaException,
 java.sql.SQLException

Set the comment in the FGT_GEN.STR1 attribute per the given accessibilityId.
Parameters:

accessibilityId - is one of the FGT_LIST_OF_VAL.IDs that can be obtained through
the getAccessibilityIds() method.
comment - is the comment to which to attach to the given accessibility need.

insert

public void insert(java.lang.Object[] accessibilityIds)
 throws com.saba.exception.SabaException,
 java.sql.SQLException

Update the order with the given set (array) of accessibilityIds.
Parameters:

accessibilityIds - should be a distinct set of FGT_LIST_OF_VAL.IDs that represent
those accessibility needs that are identified by the user from the order_receipt.saba page.

getAccessibilityIds

public java.lang.Object[] getAccessibilityIds()
 throws com.saba.exception.SabaException,
 java.sql.SQLException

Obtain a set of Saba database IDs representing a list of values for accessibility needs.

Method Detail

Page 3 of 4: Class AccessibilityPicker

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

Returns:
An array of String's that represent the set values and distinct FGT_LIST_OF_VAL.IDs in
the database. These are not the selected accessibilityIds, but rather all possibilities listed
in the database for accessibility needs.

getAccessibilityName

public java.lang.String getAccessibilityName(java.lang.String id)
 throws com.saba.exception.SabaException,
 java.sql.SQLException

Per each obtainable accessibility IDs, obtain the user interface name for the id.
Parameters:

id - The accessibility id.
Returns:

The name associated with the id.

main

public static void main(java.lang.String[] argv)
 throws java.lang.Throwable

Unit test method.

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Page 4 of 4: Class AccessibilityPicker

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

/* $Id:$ */

/* Copyright (C) 2002 Saba Software, Services, J. S. Jensen
 * mailto:jsjensen@saba.com
 * All rights are non-exclusive.
 */

package com.saba.doe;

import java.sql.*;
import java.util.*;

import com.saba.db.*;
import com.saba.exception.*;

/** AccessibilityPicker is a custom class that will manage the
 * data for the DOE/SFA/Accenture Accessibility needes.
 * This class is designed to work in compliance with the
 * <i>SFA University Modernization LMS Project - Phase II,
 * LMS Accessibility Issues Design, 17 December, 2001 </i>
 * <p>
 * The accessibility will be stored in several relational tables in
 * the Saba database. All IDs generated per the Accessibility
 * requirements in any table will be incrementally numbered, have
 * appropriate prefixes (see FGT_DD_CLASS for list) for data
 * dictionary compliance and be numbered from 98 * 10^13 and higher.
 * <p> The list of the tables are: <p>
 * FGT_GEN - a generic entity relationship (ER) table that
 * relates one saba object to another. Each ID attribute
 * will hereby be prefixed by the 5 character `acces' string.
 * For relating accessibility needs to the order, the ID1 attribute
 * will contain an order ID from TPT_OE_ORDER, while the ID2
attribute
 * will contain a list of values ID to FGT_LIST_OF_VAL.
 * For storing comments per <i>each</i> of the forementioned
 * accessibility needs, the ID1 attribute will contain the list of
 * values ID and the STR1 attribute will contain the descriptive
 * free-form field possibly filled in by the user. Please note
 * STR <i>can</i> and <i>may</i> be NULL; the ID2 attribute will
contain
 * (for consistency's and redundancy's sake) the order id.<p>
 * FGT_LOV - location to hold list-of-values (LOVs). Each
 * row in this table represents one abstracted list of values
 * by name. Each item in FGT_LOV is stored in:<p>
 * FGT_LIST_OF_VAL - holds each item of the named list of values
 * from the FGT_LOV table. The LIST_ID contains a reference to the
 * FGT_LOV.ID attribute earlier described.<p>
 * TPT_OE_ORDER - is the order table in which all order
information
 * is stored. The CUSTOM0 attribute in this table golds the general
 * comment possibly entered by the learner when registering for any
 * given order.
 * @author jsjensen@saba.com
 */
public class AccessibilityPicker extends com.saba.denver.SabaObject {

private long id;
private String orderId;

/** Instantiate a new AccessibilityPicker.

 * @param siteName is a valid name of a SabaSite. This is
 * by default `SabaWeb' but can be of any name depending
 * on what is named in SabaAdmin. This parameter can be

obtained
 * from the getSiteName() method in a SabaPage.
 * @param orderId is the order id attribute for which we will
 * be attaching data.
 */
public AccessibilityPicker(String siteName, String orderId) throws

SabaException {
super(siteName);
this.orderId= orderId.trim();
id = (long)98e13 + System.currentTimeMillis();

} // AccessibilityPicker

/*
private static String delSQL = "delete from fgt_gen where id1=? "

+ " and num1 < ? and id2 like 'listv%'";
private void remove() throws SQLException, SabaException {

Connection con = null;
PreparedStatement ps = null;
try {

con = getConnection();
ps = con.prepareStatement(delSQL);
log(delSQL);
ps.setString(1,orderId);
ps.setInt(2,(int)(System.currentTimeMillis()/1000L));
log(ps.executeUpdate()+" row(s) deleted.");

} finally {
if(ps!=null) ps.close();

} // try finally
} // remove
*/

private static String comSQL = "update tpt_oe_order set custom0 =
? "

+ " where id = ?";
/** setComment() will set (update) the comment and the
 * TPT_OE_ORDER.CUSTOM0 attribute per the named order.

 * @param comment is the comment string that will be placed in
this

 * field.
 */
public void setComment(String comment) throws SabaException,

SQLException {
PreparedStatement ps = null;
try {

ps = getConnection().prepareStatement(comSQL);
log(comSQL);
ps.setString(1,comment);
ps.setString(2,orderId);
log(ps.executeUpdate()+" row(s) affected.");

} finally {
if(ps!=null) ps.close();

} // try finally
} // setComment

private static String iacSQL = "insert into fgt_gen "
+ "(id,id1,id2,time_stamp,type,str1) values (?,?,?,?,1,?)";

/** Set the comment in the FGT_GEN.STR1 attribute per the given

 * accessibilityId.
 * @param accessibilityId is one of the FGT_LIST_OF_VAL.IDs that
 * can be obtained through the getAccessibilityIds() method.
 * @param comment is the comment to which to attach to the given
 * accessibility need.
 */
public void setAccessibilityComment(String accessibilityId, String

comment) throws SabaException, SQLException {
PreparedStatement ps = null;
try {

ps = getConnection().prepareStatement(iacSQL);
log(iacSQL);
ps.setString(1,"acces"+String.valueOf(id++));
ps.setString(3,orderId);
ps.setString(2,accessibilityId);
ps.setString(4,String.valueOf(System.currentTimeMillis

()));
ps.setString(5,comment);
log(ps.executeUpdate()+" row(s) inserted.");

} finally {
if(ps!=null) ps.close();

} // try finally
} // setAccessibilityComment

private static String insSQL = "insert into fgt_gen "
+ "(id,id1,id2,time_stamp,type) values (?,?,?,?,1)";

/** Update the order with the given set (array) of
accessibilityIds.
 * @param accessibilityIds should be a distinct set of

 * FGT_LIST_OF_VAL.IDs that represent those accessibility
 * needs that are identified by the user from the
 * order_receipt.saba page.
 */
public void insert(Object[] accessibilityIds) throws

SabaException, SQLException {
// log("Removing...");
// remove();
// log("...Removed.");
PreparedStatement ps = null;
try {

ps = getConnection().prepareStatement(insSQL);
log(insSQL);
ps.setString(2,orderId);
ps.setString(4,String.valueOf(System.currentTimeMillis

()));
// ps.setLong(5,(int)(System.currentTimeMillis

()/1000L));
for(int i=0;i<accessibilityIds.length;i++) {

ps.setString(1,"acces"+String.valueOf(id++));
ps.setString(3,(String)accessibilityIds[i]);
log(ps.executeUpdate()+" row(s) inserted.");

} // for
} finally {

if(ps!=null) ps.close();
} // try finally

} // insert

private static String locSQL = "select e.id from fgt_list_of_val e
"

+ ",fgt_lov l where e.list_id=l.id and lower(l.name)="

+ "'accessibility' order by e.id";
/** Obtain a set of Saba database IDs representing a list of

values
 * for accessibility needs.
 * @return An array of String's that represent the set values
 * and distinct FGT_LIST_OF_VAL.IDs in the database. These are
 * not the selected accessibilityIds, but rather all
 * possibilities listed in the database for accessibility needs.
 */
public Object[] getAccessibilityIds() throws SabaException,

SQLException {
PreparedStatement ps = null;
ResultSet rs = null;
Object[] o = null;
try {

ps = getConnection().prepareStatement(locSQL);
log(locSQL);
rs = ps.executeQuery();
ArrayList al = new ArrayList();
while(rs.next()) {

al.add(rs.getObject(1));
} // while
o = al.toArray();

} finally {
if(rs!=null) rs.close();
if(ps!=null) ps.close();

} // try finally
return o;

} // getAccessibilityIds

private static String locNSQL = "select name from fgt_list_of_val
"

+ "where id = ?";
/** Per each obtainable accessibility IDs, obtain the user

interface
 * name for the id.
 * @param id The accessibility id.
 * @return The name associated with the id.
 */
public String getAccessibilityName(String id) throws

SabaException, SQLException {
PreparedStatement ps = null;
ResultSet rs = null;
String ret = null;
try {

ps = getConnection().prepareStatement(locNSQL);
log(locNSQL);
ps.setString(1,id.trim());
rs = ps.executeQuery();
if(rs.next()) ret = rs.getObject(1).toString();

} finally {
if(rs!=null) rs.close();
if(ps!=null) ps.close();

} // try finally
return ret;

} // getLocationName

/** Unit test method. */
public static void main(String[] argv) throws Throwable {

// Class.forName("oracle.jdbc.driver.OracleDriver");

// Connection con = DriverManager.getConnection
("jdbc:oracle:thin:@10.10.60.167:1521:DEMO4x","tp2","tp2");

String id = "intor000000000001040";
id = argv[0];
AccessibilityPicker ap = new AccessibilityPicker

("SabaWeb",id);
Object[] o = ap.getAccessibilityIds();
ArrayList al = new ArrayList();
for(int i=0;i<o.length;i++) {

System.out.println(o[i]+":"+ap.getAccessibilityName
((String)o[i]));

al.add(o[i]);
ap.setAccessibilityComment(o[i].toString(),o

[i].toString());
}
ap.insert(al.toArray());
ap.setComment("This is quite interesting.");

ap.close();
// Logger.getWriter().flush();

} // main

} // LocationsPicker

delete from fgt_lov where id like 'listi98%';
insert into fgt_lov(id,flags,name,time_stamp,description) values (

'listi980000000000001',
'0000000000',
'accessibility',
'1011126762000',
'Accessibility Needs'

);

delete from fgt_list_of_val where id like 'listv98%';
insert into fgt_list_of_val
(id,list_id,locale_id,category,enabled,name,time_stamp) values (

'listv980000000000001',
'listi980000000000001',
'local000000000000001',
0,
1,
'Deafness',
'1011126762000'

);

insert into fgt_list_of_val
(id,list_id,locale_id,category,enabled,name,time_stamp) values (

'listv980000000000002',
'listi980000000000001',
'local000000000000001',
0,
1,
'Blindness',
'1011126762000'

);

insert into fgt_list_of_val
(id,list_id,locale_id,category,enabled,name,time_stamp) values (

'listv980000000000003',
'listi980000000000001',
'local000000000000001',
0,
1,
'Physical Disability',
'1011126762000'

);

insert into fgt_list_of_val
(id,list_id,locale_id,category,enabled,name,time_stamp) values (

'listv980000000000004',
'listi980000000000001',
'local000000000000001',
0,
1,
'Other',
'1011126762000'

);

All Classes
AccessibilityPicker
SabaObject
User

Page 1 of 1All Classes

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

How This API Document Is Organized
This API (Application Programming Interface) document has pages corresponding to the items in the
navigation bar, described as follows.

Overview

The Overview page is the front page of this API document and provides a list of all
packages with a summary for each. This page can also contain an overall description of the
set of packages.

Package

Each package has a page that contains a list of its classes and interfaces, with a summary for
each. This page can contain four categories:

Interfaces (italic)
Classes
Exceptions
Errors

Class/Interface

Each class, interface, inner class and inner interface has its own separate page. Each of these
pages has three sections consisting of a class/interface description, summary tables, and
detailed member descriptions:

Class inheritance diagram
Direct Subclasses
All Known Subinterfaces
All Known Implementing Classes
Class/interface declaration
Class/interface description

Inner Class Summary
Field Summary
Constructor Summary
Method Summary

Field Detail
Constructor Detail
Method Detail

Each summary entry contains the first sentence from the detailed description for that item.
The summary entries are alphabetical, while the detailed descriptions are in the order they

Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

Page 1 of 2: API Help

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

appear in the source code. This preserves the logical groupings established by the
programmer.

Tree (Class Hierarchy)

There is a Class Hierarchy page for all packages, plus a hierarchy for each package. Each
hierarchy page contains a list of classes and a list of interfaces. The classes are organized by
inheritance structure starting with java.lang.Object. The interfaces do not inherit from
java.lang.Object.

When viewing the Overview page, clicking on "Tree" displays the hierarchy for all
packages.
When viewing a particular package, class or interface page, clicking "Tree" displays
the hierarchy for only that package.

Deprecated API

The Deprecated API page lists all of the API that have been deprecated. A deprecated API
is not recommended for use, generally due to improvements, and a replacement API is
usually given. Deprecated APIs may be removed in future implementations.

Index

The Index contains an alphabetic list of all classes, interfaces, constructors, methods, and
fields.

Prev/Next

These links take you to the next or previous class, interface, package, or related page.

Frames/No Frames

These links show and hide the HTML frames. All pages are available with or without frames.

Serialized Form

Each serializable or externalizable class has a description of its serialization fields and methods. This
information is of interest to re-implementors, not to developers using the API. While there is no link in
the navigation bar, you can get to this information by going to any serialized class and clicking
"Serialized Form" in the "See also" section of the class description.

This help file applies to API documentation generated using the standard doclet.

Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

Page 2 of 2: API Help

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

com.saba.denver
Class User
java.lang.Object
 |
 +--com.saba.denver.SabaObject
 |
 +--com.saba.denver.User

public class User
extends SabaObject

User represents a generic user in the system, be that a person or an employee.

User

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Constructor Summary
User(java.lang.String siteName, java.lang.String username)
 Instantiate a new User object referencing a given user in the Saba database.

Method Summary
 java.lang.String getPassword()

 Obtain the cleartext password for this User.
static void main(java.lang.String[] argv)

 Unit test method.

Methods inherited from class com.saba.denver.SabaObject
close, finalize, getConnection, log

Methods inherited from class java.lang.Object
clone, equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

Page 1 of 2: Class User

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

public User(java.lang.String siteName,
 java.lang.String username)

Instantiate a new User object referencing a given user in the Saba database.
Parameters:

siteName - The Saba site's name from each page. This can be obtained via the getSiteName
() method in the SabaPage.
username - The username (not id) in the database for the given user.

getPassword

public java.lang.String getPassword()
 throws java.sql.SQLException

Obtain the cleartext password for this User.

main

public static void main(java.lang.String[] argv)
 throws java.lang.Throwable

Unit test method.

Method Detail

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Page 2 of 2: Class User

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

Deprecated API

Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

Page 1 of 1: Deprecated List

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

import java.sql.*;
import java.io.*;

public class Describe {

public static void main(String[] argv) throws Throwable {

Class.forName("oracle.jdbc.driver.OracleDriver");
String url = "jdbc:oracle:thin:@emsdb1:1521:emsdb6";
String user = "tp2";
String pass = user;

PrintWriter pw = new PrintWriter(System.out,true);

Connection con = DriverManager.getConnection(url,user,pass);
String sql = "select * from "+argv[0];
Statement s = con.createStatement();
ResultSet rs = s.executeQuery(sql);
pw.println(argv[0].toUpperCase());
pw.println("--");
if(rs.next()) {

ResultSetMetaData md = rs.getMetaData();
for(int i=1;i<=md.getColumnCount();i++) {

// pw.print(md.getColumnLabel(i)+"\t");
pw.print(md.getColumnName(i)+"\t");
pw.print(md.getColumnTypeName(i)+"\t");
pw.print((md.isNullable(i)

==md.columnNullable?"NULL":"NOT NULL")+"\t");
pw.println(md.getPrecision(i)+"."+md.getScale

(i));
} // for

} // if

pw.close();
rs.close();
s.close();
con.close();

} // main

} // Describe

A C F G I L M S U

A
AccessibilityPicker - class com.saba.doe.AccessibilityPicker.

AccessibilityPicker is a custom class that will manage the data for the DOE/SFA/Accenture
Accessibility needes.

AccessibilityPicker(String, String) - Constructor for class com.saba.doe.AccessibilityPicker
Instantiate a new AccessibilityPicker.

C
close() - Method in class com.saba.denver.SabaObject

In any usage of SabaObject, try{}finally{} any use and be absolutely sure that in your finally{}
block you close() this Object.

com.saba.denver - package com.saba.denver

com.saba.doe - package com.saba.doe

F
finalize() - Method in class com.saba.denver.SabaObject

Just in case someone does not call close, please close the Connection object out upon GC.

G
getAccessibilityIds() - Method in class com.saba.doe.AccessibilityPicker

Obtain a set of Saba database IDs representing a list of values for accessibility needs.
getAccessibilityName(String) - Method in class com.saba.doe.AccessibilityPicker

Per each obtainable accessibility IDs, obtain the user interface name for the id.
getConnection() - Method in class com.saba.denver.SabaObject

Obtain a Saba Connection.
getPassword() - Method in class com.saba.denver.User

Obtain the cleartext password for this User.

I

Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

Page 1 of 3: Index

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

insert(Object[]) - Method in class com.saba.doe.AccessibilityPicker
Update the order with the given set (array) of accessibilityIds.

L
log(Object) - Method in class com.saba.denver.SabaObject

Any subclass may call log() to log out to the standard error file, most often found in jrun/jsm-
default/logs/stderr.log.

M
main(String[]) - Static method in class com.saba.doe.AccessibilityPicker

Unit test method.
main(String[]) - Static method in class com.saba.denver.User

Unit test method.

S
SabaObject - class com.saba.denver.SabaObject.

SabaObject is a basic low-level class that abstracts the getting and setting of Saba database
connections (given a particular Saba site).

SabaObject(String) - Constructor for class com.saba.denver.SabaObject
Instantiate a new SabaObject and make sure it relates itself to a particular Saba site.

setAccessibilityComment(String, String) - Method in class com.saba.doe.AccessibilityPicker
Set the comment in the FGT_GEN.STR1 attribute per the given accessibilityId.

setComment(String) - Method in class com.saba.doe.AccessibilityPicker
setComment() will set (update) the comment and the TPT_OE_ORDER.CUSTOM0 attribute per
the named order.

U
User - class com.saba.denver.User.

User represents a generic user in the system, be that a person or an employee.
User(String, String) - Constructor for class com.saba.denver.User

Instantiate a new User object referencing a given user in the Saba database.

A C F G I L M S U
Overview Package Class Tree Deprecated Index Help

 PREV NEXT FRAMES NO FRAMES

Page 2 of 3: Index

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

Page 3 of 3: Index

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

This set of source files represent the added logic that is developed for Accenture to represent and better
manage customization needs for the SFA/DOE project. All table structures for the data for accessibility
are documented in the com.saba.doe.AccessibilityPicker class documentation.

See:
 Description

This set of source files represent the added logic that is developed for Accenture to represent and better
manage customization needs for the SFA/DOE project.

All table structures for the data for accessibility are documented in the com.saba.doe.AccessibilityPicker
class documentation. Accessibility is related through an Entitry Relationship (ER) table in Saba called
the FGT_GEN table. Normally, relations will exist in the tables (obejcts) themselves, however we are
rlating list of value (LOV) items to an order, which is not common, thus we will store the database ID of
the order and a list of values item database ID per row for each accessibility need (list of values ID) that
is represented by the user that they themselves need per order.

Accessibility Needs will be attached to orders and NOT to user profiles giving a much more flexible
representation of accessibility needs per class instead of globally per learner.

The tables used in storing Accessibility information consist of four tables:

FGT_GEN,
FGT_LOV,
FGT_LIST_OF_VAL, and
TPT_OE_ORDER.

At the very root of accessibility needs, the needs themselves are stored as a ``list of values.'' This list of
values contains an arbitrary `list' of items such as Deafness, Blindness, et cetera.

The list of values themselves (the arbitrary list itself) must have a name. Since all list of values items
(Blindness, Deafness, etc) are all stored in the same table with an arbitrary number of other list of
values, a unique name for this list istelf is effectively a reference creating a subset of the list appropriate
for accessibility needs.

The encompassing name for any given list is stored in the table FGT_LOV. The name of the list is
``Accessibility Needs,'' and stored in the attribute FGT_LOV.NAME. An ID (FGT_LOV.ID) can be
obtained from this table where the name (FGT_LOV.NAME) is ``Accessibility Needs.'' The ID obtained
from this table will be prefixed by `listi.'

 Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

Packages
com.saba.denver
com.saba.doe

Page 1 of 2: Overview

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

Each of the items for the list of values named by ``Accessibility Needs'' (Blindness, Deafness, etc) is
stored in the table FGT_LIST_OF_VAL and each has a unique row. Each row in this table has a unique
ID that is prefixed by `listv.' The attribute FGT_LIST_OF_VAL.LIST_ID is a foreign key marker to the
actual list name ID and links to FGT_LOV.ID.

Every order placed in the system (regardless of how many order items there are associated with every
order) is stored in a unique row in TPT_OE_ORDER. Each row in this table will either have the prefix
`intor' or `extor' for internal orders and external orders, respectfully.

As we wish to associate accessibility needs with each order (internal or external), Saba contains a very
generic Entity Relationship (ER) table called FGT_GEN. In order to associate orders with not only a list
of values but each selected list of value items, individual rows will be inserted into FGT_GEN to create
the relationship that otherwise does not naturally exist in the Saba database schema (mapping orders to
accessibility list of value items).

For every relationship that is made between orders and accessibility needs, a multitude of rows will be
inserted into FGT_GEN. All of these rows will be prefixed with the ID prefix of `acces.'

To relate a single list of values item (Blindness or Deafness, etc) to a particular order, a new row will be
inserted into FGT_GEN with three primary fields being populated. FGT_GEN.ID is the unique ID for
the row (acces); FGT_GEN.ID1 will contain the order ID of the order in question (intor, extor);
FGT_GEN.ID2 will contain the list of values item (listv).

For each selected list of values item, a single row matching the above description is inserted. Each list of
values item can have a separate text field associated with it. In this case, the FGT_GEN table will have
FGT_GEN.ID1 with the list of values item (listv) ID, the FGT_GEN.ID2 will have the order ID (intor,
extor), and the FGT_GEN.STR1 will contain the text associated with each test entry for selected list of
values items.

A general comment may be made on the accessibility needs for each order. This general overall
comment is updated in the TPT_OE_ORDER.CUSTOM0 field.

 Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

Page 2 of 2: Overview

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

This set of source files represent the added logic that is developed for Accenture to represent and better
manage customization needs for the SFA/DOE project.

All table structures for the data for accessibility are documented in the com.saba.doe.AccessibilityPicker
class documentation. Accessibility is related through an Entitry Relationship (ER) table in Saba called
the FGT_GEN table. Normally, relations will exist in the tables (obejcts) themselves, however we are
rlating list of value (LOV) items to an order, which is not common, thus we will store the database ID of
the order and a list of values item database ID per row for each accessibility need (list of values ID) that
is represented by the user that they themselves need per order.

Accessibility Needs will be attached to orders and NOT to user profiles giving a much more flexible
representation of accessibility needs per class instead of globally per learner.

The tables used in storing Accessibility information consist of four tables:

FGT_GEN,
FGT_LOV,
FGT_LIST_OF_VAL, and
TPT_OE_ORDER.

At the very root of accessibility needs, the needs themselves are stored as a ``list of values.'' This list of
values contains an arbitrary `list' of items such as Deafness, Blindness, et cetera.

The list of values themselves (the arbitrary list itself) must have a name. Since all list of values items
(Blindness, Deafness, etc) are all stored in the same table with an arbitrary number of other list of
values, a unique name for this list istelf is effectively a reference creating a subset of the list appropriate
for accessibility needs.

The encompassing name for any given list is stored in the table FGT_LOV. The name of the list is
``Accessibility Needs,'' and stored in the attribute FGT_LOV.NAME. An ID (FGT_LOV.ID) can be
obtained from this table where the name (FGT_LOV.NAME) is ``Accessibility Needs.'' The ID obtained
from this table will be prefixed by `listi.'

Each of the items for the list of values named by ``Accessibility Needs'' (Blindness, Deafness, etc) is
stored in the table FGT_LIST_OF_VAL and each has a unique row. Each row in this table has a unique
ID that is prefixed by `listv.' The attribute FGT_LIST_OF_VAL.LIST_ID is a foreign key marker to the
actual list name ID and links to FGT_LOV.ID.

Every order placed in the system (regardless of how many order items there are associated with every
order) is stored in a unique row in TPT_OE_ORDER. Each row in this table will either have the prefix
`intor' or `extor' for internal orders and external orders, respectfully.

As we wish to associate accessibility needs with each order (internal or external), Saba contains a very
generic Entity Relationship (ER) table called FGT_GEN. In order to associate orders with not only a list
of values but each selected list of value items, individual rows will be inserted into FGT_GEN to create
the relationship that otherwise does not naturally exist in the Saba database schema (mapping orders to
accessibility list of value items).

For every relationship that is made between orders and accessibility needs, a multitude of rows will be
inserted into FGT_GEN. All of these rows will be prefixed with the ID prefix of `acces.'

Page 1 of 2

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

To relate a single list of values item (Blindness or Deafness, etc) to a particular order, a new row will be
inserted into FGT_GEN with three primary fields being populated. FGT_GEN.ID is the unique ID for
the row (acces); FGT_GEN.ID1 will contain the order ID of the order in question (intor, extor);
FGT_GEN.ID2 will contain the list of values item (listv).

For each selected list of values item, a single row matching the above description is inserted. Each list of
values item can have a separate text field associated with it. In this case, the FGT_GEN table will have
FGT_GEN.ID1 with the list of values item (listv) ID, the FGT_GEN.ID2 will have the order ID (intor,
extor), and the FGT_GEN.STR1 will contain the text associated with each test entry for selected list of
values items.

A general comment may be made on the accessibility needs for each order. This general overall
comment is updated in the TPT_OE_ORDER.CUSTOM0 field.

Page 2 of 2

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

This set of source files represent the added logic that is developed for Accenture to represent and better
manage customization needs for the SFA/DOE project. All table structures for the data for accessibility
are documented in the com.saba.doe.AccessibilityPicker class documentation.

See:
 Description

This set of source files represent the added logic that is developed for Accenture to represent and better
manage customization needs for the SFA/DOE project.

All table structures for the data for accessibility are documented in the com.saba.doe.AccessibilityPicker
class documentation. Accessibility is related through an Entitry Relationship (ER) table in Saba called
the FGT_GEN table. Normally, relations will exist in the tables (obejcts) themselves, however we are
rlating list of value (LOV) items to an order, which is not common, thus we will store the database ID of
the order and a list of values item database ID per row for each accessibility need (list of values ID) that
is represented by the user that they themselves need per order.

Accessibility Needs will be attached to orders and NOT to user profiles giving a much more flexible
representation of accessibility needs per class instead of globally per learner.

The tables used in storing Accessibility information consist of four tables:

FGT_GEN,
FGT_LOV,
FGT_LIST_OF_VAL, and
TPT_OE_ORDER.

At the very root of accessibility needs, the needs themselves are stored as a ``list of values.'' This list of
values contains an arbitrary `list' of items such as Deafness, Blindness, et cetera.

The list of values themselves (the arbitrary list itself) must have a name. Since all list of values items
(Blindness, Deafness, etc) are all stored in the same table with an arbitrary number of other list of
values, a unique name for this list istelf is effectively a reference creating a subset of the list appropriate
for accessibility needs.

The encompassing name for any given list is stored in the table FGT_LOV. The name of the list is
``Accessibility Needs,'' and stored in the attribute FGT_LOV.NAME. An ID (FGT_LOV.ID) can be
obtained from this table where the name (FGT_LOV.NAME) is ``Accessibility Needs.'' The ID obtained
from this table will be prefixed by `listi.'

 Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

Packages
com.saba.denver
com.saba.doe

Page 1 of 2: Overview

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

Each of the items for the list of values named by ``Accessibility Needs'' (Blindness, Deafness, etc) is
stored in the table FGT_LIST_OF_VAL and each has a unique row. Each row in this table has a unique
ID that is prefixed by `listv.' The attribute FGT_LIST_OF_VAL.LIST_ID is a foreign key marker to the
actual list name ID and links to FGT_LOV.ID.

Every order placed in the system (regardless of how many order items there are associated with every
order) is stored in a unique row in TPT_OE_ORDER. Each row in this table will either have the prefix
`intor' or `extor' for internal orders and external orders, respectfully.

As we wish to associate accessibility needs with each order (internal or external), Saba contains a very
generic Entity Relationship (ER) table called FGT_GEN. In order to associate orders with not only a list
of values but each selected list of value items, individual rows will be inserted into FGT_GEN to create
the relationship that otherwise does not naturally exist in the Saba database schema (mapping orders to
accessibility list of value items).

For every relationship that is made between orders and accessibility needs, a multitude of rows will be
inserted into FGT_GEN. All of these rows will be prefixed with the ID prefix of `acces.'

To relate a single list of values item (Blindness or Deafness, etc) to a particular order, a new row will be
inserted into FGT_GEN with three primary fields being populated. FGT_GEN.ID is the unique ID for
the row (acces); FGT_GEN.ID1 will contain the order ID of the order in question (intor, extor);
FGT_GEN.ID2 will contain the list of values item (listv).

For each selected list of values item, a single row matching the above description is inserted. Each list of
values item can have a separate text field associated with it. In this case, the FGT_GEN table will have
FGT_GEN.ID1 with the list of values item (listv) ID, the FGT_GEN.ID2 will have the order ID (intor,
extor), and the FGT_GEN.STR1 will contain the text associated with each test entry for selected list of
values items.

A general comment may be made on the accessibility needs for each order. This general overall
comment is updated in the TPT_OE_ORDER.CUSTOM0 field.

 Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

Page 2 of 2: Overview

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

Hierarchy For All Packages
Package Hierarchies:

com.saba.denver, com.saba.doe

Class Hierarchy
class java.lang.Object

class com.saba.denver.SabaObject
class com.saba.doe.AccessibilityPicker
class com.saba.denver.User

Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

Page 1 of 1: Class Hierarchy

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

Package com.saba.doe

Overview Package Class Tree Deprecated Index Help
 PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES

Class Summary
AccessibilityPicker AccessibilityPicker is a custom class that will manage the data for the

DOE/SFA/Accenture Accessibility needes.

Overview Package Class Tree Deprecated Index Help
 PREV PACKAGE NEXT PACKAGE FRAMES NO FRAMES

Page 1 of 1: Package com.saba.doe

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

Hierarchy For Package com.saba.doe
Package Hierarchies:

All Packages

Class Hierarchy
class java.lang.Object

class com.saba.denver.SabaObject
class com.saba.doe.AccessibilityPicker

Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

Page 1 of 1: com.saba.doe Class Hierarchy

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

com.saba.denver
Class SabaObject
java.lang.Object
 |
 +--com.saba.denver.SabaObject

Direct Known Subclasses:
AccessibilityPicker, User

public abstract class SabaObject
extends java.lang.Object

SabaObject is a basic low-level class that abstracts the getting and setting of Saba database connections
(given a particular Saba site). To obtain a Saba database connection in a class, extend this class and you
will be able to use the getConnection() method to obtain said connection. This Connection object is not
able to be closed. One will instead return it to the SabaObject by calling the freeConnection() method,
which will return this object to the connection pool.

See Also:
Connection

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Constructor Summary
SabaObject(java.lang.String siteName)
 Instantiate a new SabaObject and make sure it relates itself to a particular Saba site.

Method Summary
 void close()

 In any usage of SabaObject, try{}finally{} any use and be absolutely sure
that in your finally{} block you close() this Object.

 void finalize()
 Just in case someone does not call close, please close the Connection object
out upon GC.

 java.sql.Connection getConnection()
 Obtain a Saba Connection.

protected void
log(java.lang.Object o)
 Any subclass may call log() to log out to the standard error file, most often

Page 1 of 3: Class SabaObject

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

SabaObject

public SabaObject(java.lang.String siteName)

Instantiate a new SabaObject and make sure it relates itself to a particular Saba site.
Parameters:

siteName - The Saba site to be processed. Obtained through the getSiteName() method call
in a SabaPage.

See Also:
com.saba.page.SabaPage

log

protected void log(java.lang.Object o)

Any subclass may call log() to log out to the standard error file, most often found in jrun/jsm-
default/logs/stderr.log. This will write the current date, and thread information and the toString()
representation of the passed Object.
Parameters:

o - The object to represent a s a string.
See Also:

Date, java.lang.Thread, Object

getConnection

public final java.sql.Connection getConnection()
 throws java.sql.SQLException,
 com.saba.exception.SabaException

Obtain a Saba Connection. This Connection object should never be close()d, but rather be returned
to SabaObject via the freeConnection() method.
Returns:

A Saba database Connection.
See Also:

Connection

found in jrun/jsm-default/logs/stderr.log.

Methods inherited from class java.lang.Object
clone, equals, getClass, hashCode, notify, notifyAll, toString, wait, wait, wait

Constructor Detail

Method Detail

Page 2 of 3: Class SabaObject

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

close

public final void close()
 throws com.saba.exception.SabaException

In any usage of SabaObject, try{}finally{} any use and be absolutely sure that in your finally{}
block you close() this Object.

finalize

public void finalize()

Just in case someone does not call close, please close the Connection object out upon GC.
Overrides:

finalize in class java.lang.Object

Overview Package Class Tree Deprecated Index Help
 PREV CLASS NEXT CLASS FRAMES NO FRAMES
SUMMARY: INNER | FIELD | CONSTR | METHOD DETAIL: FIELD | CONSTR | METHOD

Page 3 of 3: Class SabaObject

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

/* $Id:$ */

package com.saba.denver;

import java.sql.*;

import com.saba.db.*;
import com.saba.exception.*;

/** SabaObject is a basic low-level class that abstracts the getting
 * and setting of Saba database connections (given a particular Saba
 * site). To obtain a Saba database connection in a class, extend this
 * class and you will be able to use the getConnection() method to
obtain
 * said connection. This Connection object is <i>not</i> able to be
closed.
 * One will instead return it to the SabaObject by calling the
freeConnection()
 * method, which will return this object to the connection pool.
 * @see java.sql.Connection
 * @author jsjensen@saba.com
 */
public abstract class SabaObject {

private String siteName;
private Connection con;
private Object connectionLock;

/** Instantiate a new SabaObject and make sure it relates itself
 * to a particular Saba site.
 * @param siteName The Saba site to be processed. Obtained

through
 * the getSiteName() method call in a SabaPage.
 * @see com.saba.page.SabaPage
 */
public SabaObject(String siteName) {

this.siteName = siteName;
connectionLock = new Object();

}

/** Any subclass may call log() to log out to the standard error
file,

 * most often found in jrun/jsm-default/logs/stderr.log. This
will

 * write the current date, and thread information and the
toString()

 * representation of the passed Object.
 * @see java.util.Date
 * @see java.lang.Thread
 * @see java.lang.Object
 * @param o The object to represent a s a string.
 */
protected void log(Object o) {

System.err.println(
new java.util.Date().toString() + " [" +
Thread.currentThread().toString() + "] " +
o.toString()

);
}

/** Obtain a Saba Connection. This Connection object should <i>
 * never </i> be close()d, but rather be returned to SabaObject

via
 * the freeConnection() method.

 * @return A Saba database Connection.
 * @see java.sql.Connection
 */
final public Connection getConnection() throws SQLException,

SabaException {
synchronized(connectionLock) {

if(con==null) {
con = DbConnectionPoolManager.getConnection

(siteName);
con.setAutoCommit(true);

} // if
log("Obtained "+con.toString());
return con;

} // sync
} // getConnection

/** In any usage of SabaObject, try{}finally{} any use and be
absolutely

 * sure that in your finally{} block you close() this Object.
 */
final public void close() throws SabaException {

synchronized(connectionLock) {
if(con!=null) {

String s = con.toString();
DbConnectionPoolManager.freeConnection

(siteName,con);
con = null;
log("Freeing "+s);

}
} // sync

}

/** Just in case someone does <i>not</i> call close, please close
 * the Connection object out upon GC.
 */
public void finalize() {

try {
close();

} catch (Exception ignore) {}
} // finalize

} // SabaObject

Serialized Form

Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

Overview Package Class Tree Deprecated Index Help
 PREV NEXT FRAMES NO FRAMES

Page 1 of 1Serialized Form

8/9/2004file://C:\Documents%20and%20Settings\Douglas_W_Bailey.ACDOE\My%20Documents\...

/* $Id:$ */

/* Copyright (C) 2002 Saba Software, Services, J. S. Jensen
 * mailto:jsjensen@saba.com
 * All rights are non-exclusive.
 */
package com.saba.denver;

import java.sql.*;

/** User represents a generic user in the system, be that a person
 * or an employee.
 */
public class User extends SabaObject {

private String username;

/** Instantiate a new User object referencing a given user in the
 * Saba database.
 * @param siteName The Saba site's name from each page. This can

be
 * obtained via the getSiteName() method in the SabaPage.
 * @param username The username (not id) in the database for the

given
 * user.
 */
public User(String siteName, String username) {

super(siteName);
// Saba stores usernames in uppercase.
this.username = username.trim().toUpperCase();

}

private static String sql = "select password from tpt_employees
where username = ? "

+ " union select password from tpt_person where username = ?
";

/** Obtain the <i>cleartext</i> password for this User. */
public String getPassword() throws SQLException {

PreparedStatement ps = null;
ResultSet rs = null;
String passwd = "";
try {

ps = getConnection().prepareStatement(sql);
ps.setString(1,username);
ps.setString(2,username);
rs = ps.executeQuery();
if(rs.next()) passwd = rs.getString(1);

} catch (Exception e) {
log(e);

} finally {
if(rs!=null) rs.close();
if(ps!=null) ps.close();

} // try catch finally
System.err.println("usernm="+username);
System.err.println("passwd="+passwd);
String cleartext = com.saba.security.SabaLogin.decrypt

(passwd);
return cleartext;

} // getPassword

/** Unit test method. */
public static void main(String[] argv) throws Throwable {

User u = null;
try {

u = new User("SabaWeb","ketand");
System.out.println(u.getPassword());

} finally {
// if(u!=null) u.close();

} // try finally

u = null;
Thread.sleep(5000);
System.gc();

} // main

} // User

